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L’objectif de ce projet est de modéliser puis de résoudre un problème de séquencement des avions lors de
leur arrivée à l’aéroport en mettant en œuvre concrètement les heuristiques/métaheuristiques présentées dans
le cours. L’idée est d’implanter certains des algorithmes en les adaptant au mieux au problème : adaptation
de la représentation informatique de la solution, des paramètres propres aux algorithmes mis en jeu, etc...

1 Description du problème

1.1 Contexte industriel

Ce projet traite du séquencement des avions lors de leur arrivée à l’aéroport, problème connu dans la
littérature sous le nom de Aircraft Landing Problem [2]. Lors de l’approche d’un aéoroport, chaque avion
𝑖 dispose d’une date d’atterrissage privilégiée 𝑇𝑖 , jugée idéale selon certains critères. En effet, atterrir
plus tôt nécessiterait de dépasser sa vitesse de régime optimale conduisant à un surcoût de carburant.
De même, retarder l’atterrissage pourrait se faire en ralentissant l’avion ou encore en lui imposant un
détour, voire la réalisation d’un ou plusieurs tours d’attente. Un tel retard, outre les coûts induits par la
surconsommation de carburant, peut conduire la compagnie aérienne à dédommager des clients qui auraient
loupé une correspondance. Indépendamment de ces pénalités, la date d’atterrissage de chaque avion est
bornée entre deux valeurs extrèmes 𝐸𝑖, liée à sa vitesse maximale, d’un côté et 𝐿𝑖, liée à sa réserve de
carburant, de l’autre.

Par ailleurs les avions créent derrière eux des turbulences qui obligent à respecter une distance minimale
entre deux atterrissages successifs sur une même piste, et dans une moindre mesure sur deux pistes voisines.
Cette distance dépend des types d’avions concernés et n’est pas symétrique. En effet un petit avion devra
attendre plus longtemps s’il est précédé d’un gros avion que l’inverse.

Compte tenu des caractéristiques de chaque avion, de leur date d’atterrissage souhaitée et des contraintes
de sécurité, le problème ALP consiste finalement à :

— affecter chaque avion à une pistes d’atterrissage,
— définir l’ordre d’arrivée des avions sur chaque piste,
— pour un ordre donné d’avions, déterminer l’heure exacte d’atterrissage de chacun d’eux. Ce sous-

problème est connu en ordonnancement sous le nom de sous-problème de timing (STP) ;
de façon à ce que le coût de pénalité global soit minimum. Pour de grosses instances, ces différentes phases
sont généralement traitées séparément. En particulier pour une seule piste, il s’agît de définir un ordre
d’avions, puis de calculer leurs dates d’atterrissage optimales.
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Figure 1 – fonction de coût de l’avion 𝑖

Dans la littérature on considère généralement qu’une
avance ou un retard engendre un coût linéaire en fonc-
tion de l’écartement à la date préférée d’atterrissage, et
le sous-problème de timing resultant est souvent traité
par programmation linéaire (PL). Cependant la modéli-
sation avec une fonction de coût plus générale (convexe
et linéaire par morceau) a été proposée et implantée de
manière plus efficace que la PL [4, 3].

Dans le cadre de ce projet, nous ne nous intéresserons
qu’à une seule piste d’atterrissage, et le coût de pénalité
sera linéaire en fonction de l’écart par rapport à la date
souhaitée (figure 1).
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1.2 Formalisation du problème

Les données

Les temps sont exprimés en minutes entières. Les pénalités sont des flottants, les coûts seront donc
également des flottants.

— 𝑛 : nombre d’avions ;
— 𝐴 = [1..𝑛] : ensemble des avions ;
— 𝐸𝑖 (entier) : heure d’atterrissage au plus tôt de l’avion 𝑖 ;
— 𝑇𝑖 (entier) : heure préférée d’atterrissage de l’avion 𝑖 (target) ;
— 𝐿𝑖 (entier) : heure d’atterrissage au plus tard de l’avion 𝑖 ;
— 𝑒𝑝𝑖 (flottant) : pénalité unitaire d’avance (earliness) pour l’avion 𝑖 ;
— 𝑡𝑝𝑖 (flottant) : pénalité unitaire de retard (tardiness) pour l’avion 𝑖 ;
— 𝑆𝑖𝑗 (entier) : durée minimale de séparation entre les avions 𝑖 et 𝑗 quand 𝑖 atterrit avant l’avion 𝑗 ;

Par ailleurs, nous supposerons l’inégalité triangulaire vérifiée au niveau des temps de séparation, c’est-à-
dire que : 𝑆𝑖𝑘 + 𝑆𝑘𝑗 >= 𝑆𝑖𝑗 ∀𝑖, 𝑗, 𝑘 ∈ [1, 𝑛]3𝑆𝑖𝑘 + 𝑆𝑘𝑗 >= 𝑆𝑖𝑗 ∀𝑖, 𝑗, 𝑘 ∈ {1, ..., 𝑛}3. Autrement dit, on ne peut
pas diminuer le temps minimum de séparation entre deux avions 𝑖 et 𝑗 en en insérant un troisième 𝑘 entre les
deux !

Chaque instance sera intégralement décrite dans un unique fichier texte dont le format est décrit en
Section 2.

Les variables de décisions

— 𝑥𝑖 : date d’atterrisage calculée pour l’avion 𝑖,
— 𝑐𝑖 : coût de pénalité pour l’avion 𝑖 :

𝑐𝑖(𝑥𝑖) = 𝑒𝑝𝑖(𝑇𝑖 − 𝑥𝑖)+ + 𝑡𝑝𝑖(𝑥𝑖 − 𝑇𝑖)+

avec (𝑋)+ représentant la partie positive de 𝑋.

Les contraintes

— la date d’atterrissage de chaque avion est bornée :
𝐸𝑖 ≤ 𝑥𝑖 ≤ 𝐿𝑖 ∀𝑖 ∈ 𝐴

— les délais de séparation doivent être respectés :
𝑥𝑗 ≥ 𝑥𝑖 + 𝑆𝑖𝑗 ∀𝑖, 𝑗 ∈ 𝐴2 tels que 𝑖 ≠ 𝑗 et 𝑥𝑖 < 𝑥𝑗

L’objectif

Le problème consiste à définir une date 𝑥𝑖 d’atterrissage pour chaque avion 𝑖 en minimisant la somme
des coûts de pénalité individuels 𝑐𝑖 tout en respectant l’ensemble des contraintes.

2 Exemple d’instance, format des fichiers et outils

2.1 Les données d’entrée

Nous utiliserons deux jeux d’instances de référence pour le problème ALP [1]. Le premier jeu (airland 01
à 08) représente des instances de petites tailles, mais parfois pathologiques. Elles peuvent être traitées par
une méthode exacte et les solutions sont connues (i.e. prouvées). Le second jeu (airland 09 à 13) propose des
instances plus grosses et plus réalistes.

Ces instances sont également utilisées dans la littérature pour traiter une variante dynamique du problème
ALP dans laquelle les avions apparaissent au fur et à mesure (paramètre AppearingTime de chaque avion).
Cette variante peut entraîner une remise en cause de l’ordonnancement partiel déjà réalisé pour les avions
dont la date d’atterrissage n’est pas trop proche dans le futur (paramètre global freeze_time). Pour notre
problème, nous pourrons ignorer ces deux paramètres des fichiers d’instance. De plus par rapport au problème
décrit, les temps de séparation sont indiqués par une matrice dont les indices représentent les types d’avion
(relativement peu nombreux).
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Les différentes instances du problème sont fournies sous la forme de fichiers textes au format suivant 2 :

# Aircraft Landing Problem instance (ALP) version 1.0

name alp_01_p10
nb_planes 10
nb_kinds 2
freeze_time 10

# name kind at E T L ep tp
plane p1 1 55 130 156 560 10.0 10.0
plane p2 1 121 196 259 745 10.0 10.0
plane p3 2 15 90 99 511 30.0 30.0
plane p4 2 22 97 107 522 30.0 30.0
plane p5 2 36 111 124 556 30.0 30.0
plane p6 2 46 121 136 577 30.0 30.0
plane p7 2 50 125 139 578 30.0 30.0
plane p8 2 52 127 141 574 30.0 30.0
plane p9 2 61 136 151 592 30.0 30.0
plane p10 2 86 161 181 658 30.0 30.0

# Separation time : kind1 kind2 value
sep 1 1 3
sep 1 2 15
sep 2 1 15
sep 2 2 8

Tous les fichiers d’instances respectent les règles de syntaxe suivantes :
— Toute ligne commençant par # est un commentaire.
— Chaque ligne significative commence par un mot clé (la commande) suivi de ses paramètres.
— La commande name indique le nom de l’instance. Celui-ci pourra être utilisé par exemple dans le nom

du fichier de sortie.
— La commande nb_planes indique le nombre d’avions. En principe il correspond au nombre de lignes

plane, mais il peut être modifié pour réduire la taille de l’instance (e.g passé en paramètre de votre
programme).

— La commande nb_kinds définit le nombre de types d’avions différents et sera utilisée pour dimensionner
la matrice de séparation.

— La commande freeze_time (inutilisé pour ce projet) indique la durée minimale en-dessous de laquelle
la date d’atterrissage d’un avion déjà séquencé ne peut plus être remise en cause.

— La commande plane déclare les paramètres d’un nouvel avion :
— name (String) : nom arbitraire. Dans nos instances elle seront de la forme p1, p2, ... ,
— kind : type de l’avion,
— at (Appearing Time) : inutile ici, réservé au problème dynamique,
— T (entier) : heure d’atterrissage préférée,
— E et L (entier) : heures d’atterrissage au plus tôt et au plus tard,
— ep et tp : pénalités unitaires en cas d’avance ou de retard par rapport à la l’heure souhaitée.

— La commande sep indique la durée de séparation 𝑆𝑖𝑗 entre un avion 𝑖 de type kind1 suivi d’un avion
𝑗 de type kind2.

2.2 Format d’une solution

Voici la solution correspondant à l’instance précédente. Tout ce qui suit un caractère # est un commentaire.
— la commande name rappelle le nom de l’instance traitée,
— la commande timestamp indique la date/heure à laquelle ce fichier a été généré, ce qui vous permet

de vous y retrouver parmi vos différents essais,
— la commande cost résume le coût prétendu de cette solution,
— la commande order liste les avions dans l’ordre d’atterrissage,
— la commande landing fournit les paramètres d’atterrissage d’un avion. L’ordre des lignes landing

n’est pas significatif : vous pouvez conserver l’ordre de l’instance : p1, p2, ...) mais cela vous simplifiera
la vie de les afficher dans l’ordre de l’atterrissage.

2. Les instances d’origine ont été transcodées dans un nouveau format plus lisible et mieux adapté à une généralisation de la
fonction de coût ([3]). Accessoirement la taille de l’instance de 500 avions passe de 830 Koctets dans l’ancien format à 27 Koctets
dans ce nouveau format.
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Pour chaque atterrissage seront indiqués le nom de l’avion, sa date réelle d’atterrissage (le 𝑥𝑖), l’écart
par rapport à sa date souhaitée et son coût de pénalité. En commentaire peuvent être rappelés les
caractéristiques de l’avion (pour vérification) mais surtout le temps de séparation réél (ainsi que le
minimum requis entre parenthèses) par rapport à ses plus proches prédécesseurs. Ceci vous sera utile
pour la mise au point et la validation de vos solutions.

name alp_01_p10
timestamp 2022-11-08T16:57:22.343
cost 700.0
order [p3,p4,p5,p6,p7,p8,p9,p1,p10,p2]

# name t dt cost # comments
landing p3 99 0 0.0 # E=90 T=99 L=511 ep=30.0 tp=30.0 sep -ok-
landing p4 107 0 0.0 # E=97 T=107 L=522 ep=30.0 tp=30.0 sep 8(8) -ok-
landing p5 119 -5 150.0 # E=111 T=124 L=556 ep=30.0 tp=30.0 sep 12(8) 20(8) -ok-
landing p6 127 -9 270.0 # E=121 T=136 L=577 ep=30.0 tp=30.0 sep 8(8) 20(8) 28(8) -ok-
landing p7 135 -4 120.0 # E=125 T=139 L=578 ep=30.0 tp=30.0 sep 8(8) 16(8) 28(8) -ok-
landing p8 143 2 60.0 # E=127 T=141 L=574 ep=30.0 tp=30.0 sep 8(8) 16(8) 24(8) -ok-
landing p9 151 0 0.0 # E=136 T=151 L=592 ep=30.0 tp=30.0 sep 8(8) 16(8) 24(8) -ok-
landing p1 166 10 100.0 # E=130 T=156 L=560 ep=10.0 tp=10.0 sep 15(15) 23(15) 31(15) -ok-
landing p10 181 0 0.0 # E=161 T=181 L=658 ep=30.0 tp=30.0 sep 15(15) 30(8) 38(8) -ok-
landing p2 259 0 0.0 # E=196 T=259 L=745 ep=10.0 tp=10.0 sep 78(15) 93(3) 108(15) -ok-

2.3 Prototype pour le projet

Bien que vous soyez en majorité formés en C++, vous pourrez développer votre code dans un langage
efficace de votre choix (typiquement C++, Julia, Java, C, Rust, Fortran). Mais les formats d’entrée et de
sortie décrits ci-dessus ne sont pas une option et devront impérativement être respectés.

Cependant afin de vous faire gagner du temps en vous concentrant sur la partie optimisation du problème,
il vous sera fourni un prototype de code proto_seqata écrit en Julia. Cette archive est un projet opérationnel
dans le sens où il fonctionne correctement à l’ensta, s’exécute et gère les options de la ligne de commande
en proposant une aide sur son utilisation. En l’état, il vous permet de lire un fichier d’instance passé en
paramètre, de le résoudre à l’aide d’une méthode stupide et d’en enregistrer une solution valide dans un
fichier au format standard. Il est organisé pour pouvoir utiliser plusieurs méthodes (recuit, descente, ...) en
s’appuyant sur plusieurs algorithmes de résolution du sous-problème de timing (seul EarliestTimingSolver
est opérationnel). De plus il vous permet de choisir le solveur PL externe (CPLEX, CLP ou GLPK sont
disponibles à l’ENSTA).

Même si le but du cours est la recherche opérationnelle et non pas la programmation, vous avez fortement
intérêt à vous inspirer de l’organisation de ce code (e.g si vous voulez coder en C++) ou à vous l’approprier
(en Julia) pour être capable de l’adapter et le compléter pour votre propre besoin. En effet, il suit un modèle
d’organisation relativement générique, extensible et souple pour résoudre différents types de problèmes
d’optimisation.

L’utilisation de ce prototype et son organisation sont décrites dans les fichiers de sous-répertoire docs/src/
de l’archive du projet.

2.4 Validation des solutions

Ce prototype intègre également un validateur qui vous permettra de vérifier la conformité de vos
solutions. Outre sa fonctionnalité de validation, vous pourrez aussi l’utiliser comme exemple de manipulation
d’un objet Solution depuis votre code Julia. Les lignes suivantes permettent de résoudre (en supposant que
votre action descent soit opérationnelle !) puis de valider la solution générée :

./bin/run.jl descent data/09.alp -n 1000
=> action descent : création d'un fichier solution dans ./_tmp/
./bin/run.jl validate data/09.alp _tmp/alp_09_p100=5676.96.sol
=> affiche : "Solution correcte de coût : 5676.96"

Précisons qu’une solution non acceptée par le validateur ne sera pas prise en compte pour
vos résultats.
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3 Travail demandé

Le travail demandé se décompose en plusieurs questions, les premières servant de base aux suivantes qui
sont relativement indépendantes.

3.1 Brique « exacte » de résolution du sous-problème de timing (STP)

Nous avons vu que le sous-problème de timing (STP) consiste, pour un ordre fixé des avions, à calculer
leur date d’atterrissage précis en respectant les contraintes du problème tout en minimisant de coût global
de la solution. Le prototype fournit un exemple de « TimingSolver » dont le principe consiste à placer les
avions le plus tôt possible, ce qui conduit à une solution valide mais loin d’une solution optimale du STP !

Sur le modèle de la classe EarliestTimingSolver 3 fourni dans le prototype, créer une classe XxxTimingSolver
dont le but est de lire une solution partielle définie par un ordre donné d’avions, de calculer leur heure
d’atterrissage optimale et d’enregistrer la solution complète. Vous pourrez utiliser la Programmation Linéaire
pour résoudre ce problème 4 5. Dans ce cas le solveur sera appelé LpTimingSolver.

Vous pourrez tester cette brique de timing en passant sur la ligne de commande le fichier d’instance
traité et soit un fichier de solution partiel (contenant la ligne order), soit directement l’ordre des avions
(contenu dans la ligne order) en utilisant l’option --planes. Par exemple, la commande suivante permet à
partir d’un fichier correspondant à la plus petite instance et de l’ordre optimal des avions de reconstruire la
solution optimale (connue) :

./bin/run.jl timing --planes p3,p4,p5,p8,p6,p7,p9,p1,p10,p2 data/01.alp
=> reconstruit la solution optimale à partir de l'ordre des avions

Le rapport devra décrire en détail le modèle ou l’algorithme utilisé et justifier son optimalité. Vous
préciserez également les performances de cette brique en nombre de résolutions par seconde pour chacune
des instances proposées (en particulier les instances 09 et 13).

Question subsidiaire Le prototype vous propose une action dmip pour la résolution exacte du problème
(que nous appellerons ”approche frontale”) via une formulation PLNE avec temps discrétisé. Cette méthode
qui est implantée dans la classe MipDiscretSolver permet de résoudre de toutes petites instances 6 pour
une fonction de pénalité arbitraires des avions.
Cette méthode est utilisable par la commande :

./bin/run.jl dmip data/01.alp # -x cbc par défaut

./bin/run.jl dmip data/01.alp -x gurobi

En exploitant la fonction de coût simplifiée du problème Seqata, proposer une extension de votre modèle
PLNE de la brique STP pour résoudre le problème de façon exacte. Pour cela vous créerez une nouvelle
classe MipSolver en vous inspirant de la classe MipDiscretSolver.

3.2 Briques d’exploration locale (ExploreSolver et DescentSolver)

Les méthodes d’exploration de voisinages sont à la base de la plupart des méta-heuristiques et vous en
aurez besoin pour la question suivante. Afin d’alléger le travail à réaliser et de vous guider dans l’organisation
du code, le prototype contient déjà des méthodes implantant quelques opérateurs de voisinage paramétrables
(dans la classe Solution), une méthode d’exploration aléatoire (classe ExploreSolver) ainsi que le squelette
d’un solveur réalisant une descente.

3. Le terme classe est utilisé dans un sens d’action du programme et regroupe à la fois le type et les méthodes spécialisées
pour manipuler ce type. Il regroupe aussi la partie du programme principal destinée à l’exploiter ou à le tester.

4. D’autres méthodes plus efficaces mais plus lourdes que la Programmation Linéaire peuvent être utilisées comme la
Programmation Dynamique.

5. Un exemple d’utilisation de la bibliothèque de modélisation mathématique JuMP.jl est proposé dans la classe
MipDiscretSolver. Celle-ci permet de résoudre de manière exacte (pour les très petites instances) une version en temps
discrétisé du problème initial en utilisant la PLNE.

6. De plus, autant le solveur gratuit Cbc est équivalent en performance pour la résolution de la brique STP de la première
question, autant la différence de performance est énorme entre les solveurs commerciaux et gratuits pour la résolution par
l’approche frontale en temps disrétisé (nombre de variable binaire énorme).
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La première étape de cette question consiste donc à compléter la classe DescentSolver de façon à rendre
opérationnelle la commande de test suivante 7 :

./bin/run.jl descent -n 100 --presort target data/05.alp # => solution de coût 3100

Pour cela, vous pourrez vous inspirer de la classe ExploreSolver qui accepte systématiquement son
nouveau voisin obtenu par une inversion de deux avions arbitraires. 8.

Le voisinage idéal est généralement le résultat d’un compromis entre la rapidité de convergence et la
qualité de la solution obtenue. Votre travail pour cette question consistera à proposer un voisinage (qui peut
être un tirage aléatoire entre plusieurs voisinages élémentaires prédéfinis) permettant de résoudre au mieux
les 5 plus grosses instances (09 à 13) en 10 minutes maximum sur la machine de référence. Pour cela vous
pourrez exploiter l’option --duration alias --dur intégrée au prototype de la classe DescentSolver :

./bin/run.jl descent --dur 600 data/09.alp

3.3 Approche globale par Steepest Descent

Dans la question précédente, il s’agissait d’explorer des opérateurs de voisinage avec tirage aléatoire du
voisin à tester. Cette technique permet d’explorer des voisinages à la fois relativement larges (en nombre de
voisins) et complexes à construire (réunion de voisinage élémentaires, ...) mais sans garantie de convergence
vers le minimum local 9.

Le principe de l’algorithme de Steepest Descent consiste à définir précisément un voisinage (i.e ensemble
de voisins) et à en garantir l’exploration complète. L’algorithme s’arrête quand le minimum local est atteint.
Une des difficultés consiste à définir implicitement ou explicitement cet ensemble d’une manière suffisamment
générique pour pouvoir tester facilement différents opérateurs de voisinage. Par ailleurs, différentes stratégies
sont possibles (voir le cours) : acceptation de la première solution améliorante 10 sans attendre l’exploration
complète, pré-construction dans un tableau de l’ensemble des mouvements à explorer, ...

Votre travail consiste à créer un nouveau solveur SteepestSolver (action steepest) en vous inspirant
du DescentSolver de la question précédente. Le rapport détaillera les différents voisinages étudiés avec pour
chacun d’eux sa taille, la durée de calcul et la valeur du minimum local obtenu sur l’ensemble des instances.
En particulier vous comparerez les perforances des résultats par rapport à la descente simple de la question
précédente.

3.4 Approche globale à voisinage variable (VNS)

Vous avez vu que l’algorithme de descente pouvait fournir de bonnes solutions, mais que la qualité du
résultat et la vitesse de résolution est très sensible au choix du voisinage utilisé pour l’exploration. En
particulier la descente précédente ne permet pas de jouer sur les crières d’intensification de de diversification.
En utilisant le résultat du cours, proposer une approche de résolution globale par recherche à voisinage
variable (VNS). Sur le modèle de la classe DescentSolver, créer une classe VnsSolver et ajouter le code
nécessaire pour l’intéger dans votre projet (options, require, ...). Vous pourrez choisir la variante de l’algorithne
VNS la mieux adaptée au problème.

Le rapport détaillera et justifiera les choix effectués et les résultats obtenus sur l’ensemble des instances.

7. Celle-ci effectue une descente à partir du résultat du glouton standard (tri sur l’attribut target) avec comme critère d’arrêt
un maximum de 100 itérations non améliorantes.

8. Cette métaheuristique est certes stupide, mais contrairement à une descente, elle garantit grace à son opérateur de voisinage
« couvrant » de résoudre la plus petit instance à l’optimum (avec un peu de patience...)

9. Ce minimum local est associé non seulement à la solution initial et à l’opérateur de voisinage adopté, mais également aux
tirages aléatoires des voisins acceptés au cours de la descente (contrairement à une Steepest Descent pure).

10. Si vous voulez tester cette alternative, vous pouvez prévoir une nouvelle option booléenne --first_best alias --fb qui
vous permet, si elle est active, d’accepter la première solution améliorante rencontrée dans un voisinage.
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3.5 Approche par décomposition en tranches (optionnelle)

L’objectif de cette dernière question optionnelle 11 comporte à la fois une partie principale théorique
suivie si possible d’une implantation informatique. Elle consiste à décomposer le problème initial en tranche
dans le sens ou l’on se contente de résoudre un sous-problème défini par un sous-ensemble des avions de
l’instance complète.

Partie théorique

— Observer les fichiers d’une solution relativement bonne obtenue pour les grosses instances, en particulier
observer le sens des décallages des dates d’atterrissage par rapport à leurs dates souhaitées (target),
ainsi que la marge éventuelle sur la contrainte de séparation entre un avion et ses voisins immédiats.

— Soit une tranche d’avion définie par l’intervalle [𝑖𝑑𝑥first , 𝑖𝑑𝑥last ] dans l’ordre de la solution courante.
Déterminer les conditions à respecter sur les avions situés en 𝑖𝑑𝑥first et en 𝑖𝑑𝑥last pour que la résolution
du sous-problème de timing de la solution courante sur la tranche [𝑖𝑑𝑥first , 𝑖𝑑𝑥last ] soit équivalente à
sa résolution sur l’intervalle [1, 𝑛].

— Définir en pseudo-code une méthode de la classe Solution qui retourne une partition des sous-listes
d’avions respectant les conditions de séparation ci-dessus. Au pire des cas, cette partition sera réduite
à un singleton constitué de tous les avions dans l’ordre de la solution courante !

Partie pratique

— Implanter une méthode de la classe Solution qui retourne une partition des avions respectant les
conditions de séparation précédentes.

— Ajouter un nouveau constructeur d’Instance pour créer une instance partielle à partir de l’instance
originale complète et d’un sous-ensemble d’avions.

— Résoudre cette instance partielle soit à l’aide de votre meilleure méta-heuristique, soit en utilisant
le solveur exact fourni dans le prototype et accessible via l’action dmip (méthode PLNE frontale
résolvant le problème en temps discrétisé 12).

— Créer un nouveau solveur global SliceSolver (action slice) exploitant la statégie décrite ci-dessus
qui :
— effectue une première descente rapide pour disposer d’une solution de départ de qualité correcte,
— extraire les sous-instances de la solution obtenue par la partition décrite précédement et résoudre

séparément chaque tranches par votre meilleur solveur,
— recontruire la solution finale par concaténation des solutions des instances partielles et l’enregistrer.

3.6 Travail à réaliser et évaluation

3.6.1 Le programme

Le programme pourra être réalisé dans le langage de votre choix bien que C++ ou Julia soit fortement
conseillé. L’utilisation du prototype Julia n’est pas une obligation, mais vous devrez impérativement respecter
les spécifications suivantes :

— spec1 : le répertoire du projet (et donc l’archive compressée) sera nommé en fonction de votre numéro
de groupe qui vous sera communiqué ultérieurement, par exemple seqata_g02 pour le deuxième
groupe. Il contiendra un fichier README précisant la manière de compiler et d’utiliser le projet en
ligne de commande.

— spec2 : il devra être utilisable en ligne de commande (non interactive) depuis la machine salle du
réseau d’enseignement de l’ENSTA et gérer (au minimun) les paramèters suivants :

./bin/run.jl <action> [options] <chemin_instance> [<chemin_solution>]

Avec
<action> : une des actions parmi timing, descent, steepest, vns.

11. Sauf pour les quadrinômes pour lesquels cette question est obligatoire.
12. Cette approche qui crée une variable binaire pour chaque date et chaque avion s’affranchit de la contrainte de convexité

mais est limitée à de très petites instances.
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<chemin_instance> : chemin d’accès au fichier d’instance,
<chemin_solution> : chemin vers le fichier solution à enregistrer.
Si le chemin de la solution est omis, une solution avec un nom par défaut sera générée dans le
répertoire courant 13 (et surtout pas dans le répertoire contenant les fichiers d’instance !).

Par défaut, votre programme n’exploite qu’un seul cœur de votre ordinateur alors que les algorithmes
sont en partie séparables et se prêtent donc particulièrement bien à la parallélisation du code. Si vous
maitrisez déjà ce domaine, vous pouvez exploiter les fonctionnalités de parallélisme du langage utilisé
pour améliorer l’efficacité de vos solveurs.

3.6.2 Organisation du travail

Compte tenu des diverses occasions d’isolement (vacances, reconfinement, ...), vous serez probablement
amenés à collaborer entre vous à distance. Par conséquent chaque groupe (trinôme) partagera un dépôt git
privé (github, gitlab ou autre). Vous prendrez garde à ce que la branche master (ou main) du dépôt partagé
contienne en permanence une version fonctionnelle de votre code (cette branche ne doit pas être un brouillon !).
Vous ajouterez à la racine du projet un fichier hist.md résumant les contributions datées de chaque membre
du groupe. Les retours du code à l’encadrement se feront alors simplement par la communication de l’url du
dépôt git.

3.6.3 Le rapport final

Le rapport final devra traiter en détail les questions suivantes :
— la brique exacte de résolution du sous-problème de timing et ses performances,
— les voisinages adoptés pour vos algorithmes de descente (aléatoire et steepest),
— les choix adoptés et le fonctionnement de votre algorithme à voisinage variable,
— éventuellement la partie théorique de l’approche par décomposition en tranches.

En plus de la description propre à chaque méthode, le rapport devra fournir un tableau récapitulatif des
résultats obtenus sur tous les scénarios de test proposés (quitte à laisser des cases vides pour les instances non
traitées) ainsi qu’une analyse critique des résultats en proposant des axes d’amélioration (autres méthodes,
hybridations, …). Vous préciserez également pour chaque instance les réglages de vos algorithmes (commandes
et options à taper, ...) pour l’obtention des résultats fournis.

L’évaluation finale du projet tiendra compte :
— du programme (résultats obtenu, facilité d’utilisation et qualité de l’implantation) fourni le jour de la

soutenance ;
— du travail et des résultats obtenus sur chacune des parties détaillées précédemment et évaluées

indépendamment ;
— de la qualité globale du rapport incluant l’analyse critique ;
— de la qualité de la présentation orale du projet (clarté et esprit de synthèse).

3.6.4 Calendrier

— Pour le vendredi 9 décembre 2022, vous nous communiquez la composition de votre groupe
(typiquement un trinôme). Le prototype de projet en Julia vous sera alors fourni par email.

— Pour le vendredi 16 décembre 2022, chaque groupe devra remettre (par couriel à l’encadrement) le
lien vers le dépôt git du programme répondant aux questions 3.1 et 3.2. Votre code sera donc capable
d’exécuter les commandes suivantes 14 :

./bin/run.jl carlo --itermax 1 data/01.alp
=> trouve l'optimum de l'instance 01.alp de coût 700
./bin/run.jl descent -n 50 --presort target data/05.alp
=> trouve l'optimum de l'instance 05.alp de coût 3100

13. Cependant, le prototype fourni par défaut les solutions sous un nom automatiquement déterminé en fonction du nom
de l’instance et du coût de cette solution. Le fichier est enregistré dans le sous-répertoire _tmp/ du projet. Ce répertoire est
modifiable par l’option --outdir alias -d

14. La première commande exécute une méthode de Monte-Carlo consistant à itérer la construction d’une liste d’avions dans
un ordre arbitraire, puis à résoudre le Sous-Problème de Timing. Dans le cas particulier (d’intérêt limité pour une méthode de
Monte-Carlo !) dans lequel on ne veut qu’une seule itération, on choisit alors l’ordre le plus prometteur en triant les avions sur
leur attribut 𝑇𝑖.
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Si vous utilisez le prototype Julia fourni, profitez-en pour vous appropriez le code en en maitrisant
l’organisation. Si vous souhaitez utiliser un autre langage (C++, Java) vous devrez recoder une version
simplifiée du prototype en en respectant les fonctionnalités (gestion des options, ...).

— Pour le vendredi 6 janvier 2022, chaque groupe devra remettre par courriel le lien du dépôt git du
programme permettant de résoudre les instances proposées par l’algorithme SteepestSolver ainsi
qu’un prérapport décrivant les briques nécessaires à sa construction.

— Pour le lundi 23 janvier 2022, chaque groupe devra remettre par courriel le rapport final avec le
tableau de synthèse préliminaire des solutions obtenues.

— Pour le vendredi 27 janvier 2022, jour de soutenance, vous remettrez par courriel une archive du
code définitif. Une annexe comportant des corrections éventuelles ou des résultats complémentaires
pourra être remise également. Le corps du rapport final fourni ne doit pas être modifié ; toutes les
modifications, ajouts et évolutions devront apparaître en annexe.
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