
Projet Seqata
SÉQuencement d’ATterrissage d’Avions

Cours SOD324-MH (2022-2023)

Agnès Plateau
Maurice Diamantini et Natalia jorquera.

02/12/2022

Projet compilé le 13 février 2023 à 16h01mn
1/15

Le problème d’atterrissage sur un aéroport

Pour seqata ⇒ une seule piste d’atterrissage !

2/15

Contraintes de fenêtre de temps de chaque avion

Ei LiTi

time

xi

Avion i

𝐴 : ensemble des 𝑛 indices d’avion
𝐸𝑖 : earliest time
𝑇𝑖 : heure d’atterrissage préférée (target time)
𝐿𝑖 : latest time

𝑥𝑖 : heure d’atterrissage calculée

Date d’atterrissage de chaque avion bornée

𝐸𝑖 ≤ 𝑥𝑖 ≤ 𝐿𝑖 ∀𝑖 ∈ 𝐴
3/15

Contraintes de temps de séparation entre avions

Temps de séparation entre deux avions : 𝑆𝑖𝑗

𝑥𝑗 ≥ 𝑥𝑖 + 𝑆𝑖𝑗 ∀𝑖, 𝑗 ∈ 𝐴2 tels que 𝑖 ≠ 𝑗 et 𝑥𝑖 < 𝑥𝑗

Avec 𝑆𝑖𝑗 : matrice carrée non symétrique.
(𝑆𝑘𝑙

𝑖𝑗 si plusieurs pistes !)
4/15

Coût de pénalité d’un avion et objectif
Fenêtre de temps pour chaque avion

ci(xi) = epi(Ti − xi)
+ + tpi(xi − Ti)

+ci

xiEi Ti Li

epi tpi

Objectif du problème

min
𝑥

∑
𝑖∈𝐴

𝑐𝑖(𝑥𝑖)

5/15

Les données d’une instance
name alp_01_p10
nb_planes 10
nb_kinds 2
freeze_time 10 # inutile pour seqata (problème dynamique)

name kind at E T L ep tp
plane p1 1 55 130 156 560 10.0 10.0
plane p2 1 121 196 259 745 10.0 10.0
plane p3 2 15 90 99 511 30.0 30.0
plane p4 2 22 97 107 522 30.0 30.0
plane p5 2 36 111 124 556 30.0 30.0
plane p6 2 46 121 136 577 30.0 30.0
plane p7 2 50 125 139 578 30.0 30.0
plane p8 2 52 127 141 574 30.0 30.0
plane p9 2 61 136 151 592 30.0 30.0
plane p10 2 86 161 181 658 30.0 30.0

Separation time : kind1 kind2 value
sep 1 1 3
sep 1 2 15
sep 2 1 15
sep 2 2 8

6/15

Format de la solution et validateur 1/2
name alp_01_p10
timestamp 2022-11-08T16:57:22.343
cost 700.0
order [p3,p4,p5,p6,p7,p8,p9,p1,p10,p2]

name t dt cost # comments
landing p3 99 0 0.0 # E=90 T=99 L=511 ...
landing p4 107 0 0.0 # E=97 T=107 L=522 ...
landing p5 119 -5 150.0 # E=111 T=124 L=556 ...
landing p6 127 -9 270.0 # E=121 T=136 L=577 ...
landing p7 135 -4 120.0 # E=125 T=139 L=578 ...
landing p8 143 2 60.0 # E=127 T=141 L=574 ...
landing p9 151 0 0.0 # E=136 T=151 L=592 ...
landing p1 166 10 100.0 # E=130 T=156 L=560 ...
landing p10 181 0 0.0 # E=161 T=181 L=658 ...
landing p2 259 0 0.0 # E=196 T=259 L=745 ...

Détail des commentaires sur chaque ligne (facultatif)
▶ Les formats d’instance et de solutions sont imposés,

(mais pas les commentaires)
▶ Toute solution devra être acceptée par un validateur

7/15

Format de la solution et validateur 2/2
...
cost 700.0
order [p3,p4,p5,p6,p7,p8,p9,p1,p10,p2]
...
landing p7 135 -4 120.0

E=125 T=139 L=578 ep=30.0 tp=30.0
sep 8(8) 16(8) 28(8) -ok-

landing p8 143 2 60.0
E=127 T=141 L=574 ep=30.0 tp=30.0
sep 8(8) 16(8) 24(8) -ok-

...

Détail des commentaires sur chaque ligne (facultatif)
▶ rappel des caractéristiques de l’avion,
▶ indique l’écart réel et minimum avec ses plus proches

prédécesseurs,
▶ ⇒ utile pour déboguer votre code !

8/15

Deux approches de résolution possibles

Approche exacte du problème complet Taille limitée
▶ Pour chaque avion, chercher sa date d’atterrissage,
▶ Plusieurs modélisations exactes possibles par PLNE,
▶ ⇒ valable pour pour les petites instances,
▶ ⇒ voir exemple en PLNE dans le proto fourni.

Décomposition en deux niveaux successifs Pour Seqata !
▶ étape 1 : chercher un ordre optimal d’atterrissage des avions

⇒ définir une permutation des avions,
▶ étape 2 : Pour un ordre d’avions donné, chercher la date

précise d’atterrissage des avions
⇒ pb connu sous le nom Sous Problème de Timing (STP).

9/15

Travail demandé 1/4 : briques de bases

Brique exacte pour le Sous-Problème de Timing (= STP)
▶ ordre des avions fixé ⇒ trouver la date 𝑥𝑖 de chaque avion,
▶ solution algorithmique : Programmation Dynamique

(DpTimingSolver) non triviale pour être efficace !
⇒ aucune dépendance externe.

▶ le plus simple : Programmation Linéaire,
(LpTimingSolver) conseillé !
⇒ nécessite solveur externe CPLEX, Gurobi, CLP, ...
⇒ vous disposerez d’un exemple de solveur avec JuMP :

EarliestTimingSolver

10/15

Travail demandé 2/4 : briques de bases

Implanter une méthode de descente aléatoire
▶ définir/tester/choisir un voisinage couvrant,
▶ tirage aléatoire et acceptation éventuelle d’un voisin,
▶ compromis largeur voisinage vs rapidité convergence,
▶ créer une classe DescentSolver : Facile :

⇒ un squelette du DescentSolver existe déjà !
⇒ un ExploreSolver complet existe déjà !

11/15

Travail demandé 3/4 : Steepest Descent
Principe

1. à chaque itération, tester tous les voisins,
2. adopter le meilleur voisin et passer à l’itération suivante,
3. on s’arrête quand il n’y a plus de voisin améliorant,

⇒ déterministe pour une solution initiale donnée.
4. ⇒ créer nouvelle classe SteepestSolver,

Stratégies et variantes
▶ quel opérateur de voisinage utiliser ?
▶ accepter le premier voisin améliorant rencontré

⇒ passer à l’itération suivante sans tout explorer,
⇒ l’exploration ne sera complète que dans le minimum local.
⇒ ajoute de l’aléa selon ordre d’exploration.

▶ voisinage implicite (définir et appliquer chaque mouvement),
▶ voisinage explicite (préconstruire le vecteur des mouvements),

⇒ combinaisons de voisinages possibles mais plus difficile, 12/15

Travail demandé 4/4 : métaheuristique

Méthode à voisinage variable (VNS)
▶ but : implanter une méta-heuristique complète,
▶ ⇒ créer nouvelle classe VnsSolver,
▶ en exploitant les briques précédentes,
▶ explorer les variantes de VNS présentées en cours,
▶ objectif : meilleure solution possible en 1 heure,
▶ liberté et créativité !

Challenge !
1/2 point de bonus par record battu

pour chacune des 5 grosses instances 1

1. limité à 1.5 points
13/15

Un prototype de programme Julia est fourni
AV : Le proto est opérationnel !

▶ Projet pré-organisé et fonctionnel.
▶ Structure de classes (Instance, Planes, Solution ...).
▶ Gestion des options déjà faite (personnalisable).
▶ Lecture des fichiers d’instance faite.
▶ Plusieurs solveurs déjà implantés

(EarliestTimingSolver, ExploreSolver, CarloSolver).

INC : Le proto aide beaucoup mais...
▶ Pas mal de code à lire pour le proto.
▶ Voir fichier presentation_proto_seqata.md pour les

conseils...
▶ https://sod324.minisme.fr
▶ https://sod324.minisme.fr/seqata_docs/

14/15

https://sod324.minisme.fr
https://sod324.minisme.fr/seqata_docs/

Calendrier des retours
▶ Avant le V/09/12/2022 (le plus tôt possible)

▶ envoyer votre formation de trinôme,
▶ créer un dépot privé sous git (github, gitlab, ...)
▶ ⇒ vous recevez le code proto_seqata_p2023,
▶ ⇒ à recopier sous le nom seqata_gN (pour le groupe N),
▶ ⇒ valider votre installation de Julia,
▶ ⇒ explorer les fonctionnalités du proto.

▶ Pour V/16/12/2022 vous retourner :
▶ l’url de votre dépot git du projet avec journal,
▶ avec brique exacte STP.
▶ avec DescentSolver (premier jet),

▶ Pour V/06/01/2023 (séance de suivi de projet)
▶ retour SteepestSolver opérationnel ou en cours,
▶ prérapport avec au moins la description de la brique STP ;

▶ Pour L/23/01/2023 rapport final
avec synthèse préliminaire des résultats.

▶ Pour V/27/01/2023 (jour de l’examen)
code définitif et annexe éventuelle au rapport.

15/15

