Projet SEQATA
SEQuencement d'ATterrissage d’Avions

Cours SOD324-MH (2022-2023)

Agnes PLATEAU
Maurice DIAMANTINI et Natalia JORQUERA.

02/12/2022

1/15

Le probléme d’atterrissage sur un aéroport

l
+
1
I
* >
B8 P
+
o < 14‘ < qvi
< - 52

& k3 b 4
@ < Holding pattern

Pour SEQATA = une seule piste d'atterrissage !

2/15

Contraintes de fenétre de temps de chaque avion

Avion ¢

AN

gl time
----1 : | -

FE; T; T; L;

A : ensemble des n indices d’avion
L, : earliest time
T, : heure d'atterrissage préférée (target time)
L, : latest time

BN

x, : heure d'atterrissage calculée

<

Date d'atterrissage de chaque avion bornée

E <z <L, VicA

3/15

Contraintes de temps de séparation entre avions

Temps de séparation entre deux avions : S,

r; > x; + 5 Vi, j € A? tels que i # j et z; < x;

Avec S;; : matrice carrée non symétrique.

(Sfjl si plusieurs pistes!)

4
|
|

y

z]

4/15

Colit de pénalité d'un avion et objectif
Fenétre de temps pour chaque avion

“ ci(x;) = epi(T; — x)t + tpi(x; — T;) T

Objectif du probléeme

H{rin Z ¢;(w;)

i€A

5/15

Les données d'une instance

name alp_01_p10

nb_planes 10

nb_kinds 2

freeze_time 10 # inutile pour seqata (probléme dynamique)

name kind at E T L ep tp
plane pil 1 55 130 156 560 10.0 10.0
plane p2 1 121 196 259 745 10.0 10.0
plane p3 2 15 90 99 511 30.0 30.0
plane p4 2 22 97 107 522 30.0 30.0
plane p5 2 36 111 124 556 30.0 30.0
plane p6 2 46 121 136 577 30.0 30.0
plane p7 2 50 125 139 578 30.0 30.0
plane p8 2 52 127 141 574 30.0 30.0
plane p9 2 61 136 151 592 30.0 30.0
plane pl0 2 86 161 181 658 30.0 30.0
Separation time : kindl kind2 value

sep 113

sep 1 2 15

sep 2 1 15

sep 2 2 8

6/15

Format de la solution et validateur 1/2

name alp_01_p10
timestamp 2022-11-08T16:57:22.343
cost 700.0
order [p3,p4,p5,p6,p7,p8,p9,pl,p10,p2]

#

landing
landing
landing
landing
landing
landing
landing
landing
landing
landing

Détail des commentaires sur chaque ligne (facultatif)

P> Les formats d'instance et de solutions sont imposés,
(mais pas les commentaires)

P Toute solution devra étre acceptée par un validateur

t

99
107
119
127
135
143
151
166
181
259

dt
0
0
-5
-9
-4
2
0
10
0
0

(e}
[@Xe]
n
ct

[eNeoNeoNoNoNoNeoNoNeoNe]

0.
150.
270.
120.

60.

0.
100.

0.

0.

HHHHHHEHTHEH

*+

comments

E=90

E=97

E=111
E=121
E=125
E=127
E=136
E=130
E=161
E=196

T=99

T=107
T=124
T=136
T=139
T=141
T=151
T=156
T=181
T=259

L=511
L=522
L=556
L=577
L=578
L=574
L=592
L=560
L=658
L=745

7/15

Format de la solution et validateur 2/2

cost 700.0
order [p3,p4,p5,p6,p7,p8,p9,p1,p10,p2]
landing p7 135 -4 120.0
E=125 T=139 L=578 ep=30.0 tp=30.0
sep 8(8) 16(8) 28(8) -ok-
landing p8 143 2 60.0
E=127 T=141 L=574 ep=30.0 tp=30.0
sep 8(8) 16(8) 24(8) -ok-

Détail des commentaires sur chaque ligne (facultatif)

P rappel des caractéristiques de I'avion,

P indique I'écart réel et minimum avec ses plus proches
prédécesseurs,

P = utile pour déboguer votre code!

8/15

Deux approches de résolution possibles

Approche exacte du probleme complet Taille limitée

P Pour chaque avion, chercher sa date d'atterrissage,
P Plusieurs modélisations exactes possibles par PLNE,
P = valable pour pour les petites instances,

P = voir exemple en PLNE dans le proto fourni.

Décomposition en deux niveaux successifs Pour Seqgata!
P étape 1 : chercher un ordre optimal d’atterrissage des avions
= définir une permutation des avions,

P étape 2 : Pour un ordre d’'avions donné, chercher la date
précise d'atterrissage des avions
= pb connu sous le nom Sous Probléme de Timing (STP).

9/15

Travail demandé 1/4 : briques de bases

Brique exacte pour le Sous-Probléme de Timing (= STP)

P ordre des avions fixé = trouver la date x; de chaque avion,

P solution algorithmique : Programmation Dynamique
(DpTimingSolver) non triviale pour étre efficace!
= aucune dépendance externe.

P le plus simple : Programmation Linéaire,
(LpTimingSolver) conseillé!
= nécessite solveur externe CPLEX, Gurobi, CLP, ...
= vous disposerez d'un exemple de solveur avec JuMP :
EarliestTimingSolver

10/15

Travail demandé 2/4 : briques de bases

Implanter une méthode de descente aléatoire
définir/tester/choisir un voisinage couvrant,
tirage aléatoire et acceptation éventuelle d'un voisin,

compromis largeur voisinage vs rapidité convergence,

vVVvvyvyy

créer une classe DescentSolver : Facile :
= un squelette du DescentSolver existe déja!
= un ExploreSolver complet existe déja!

11/15

Travail demandé 3/4 : Steepest Descent
Principe
1. a chaque itération, tester tous les voisins,

2. adopter le meilleur voisin et passer a l'itération suivante,

3. on s'arréte quand il n'y a plus de voisin améliorant,
= déterministe pour une solution initiale donnée.

4. = créer nouvelle classe SteepestSolver,

Stratégies et variantes

P quel opérateur de voisinage utiliser ?

P> accepter le premier voisin améliorant rencontré
= passer a l'itération suivante sans tout explorer,
= l'exploration ne sera compléte que dans le minimum local.
= ajoute de |'aléa selon ordre d’exploration.

P voisinage implicite (définir et appliquer chaque mouvement),

P voisinage explicite (préconstruire le vecteur des mouvements),
= combinaisons de voisinages possibles mais plus difficile, 155

Travail demandé 4/4 : métaheuristique

Méthode a voisinage variable (VNS)

P but : implanter une méta-heuristique compléte,
P = créer nouvelle classe VnsSolver,

P> en exploitant les briques précédentes,

P> explorer les variantes de VNS présentées en cours,
P> objectif : meilleure solution possible en 1 heure,
P liberté et créativité !

Challenge!

1/2 point de bonus par record battu

pour chacune des 5 grosses instances?

1. limité a 1.5 points
13/15

Un prototype de programme Julia est fourni

AV : Le proto est opérationnel !

P Projet pré-organisé et fonctionnel.

P Structure de classes (Instance, Planes, Solution ...).
P> Gestion des options déja faite (personnalisable).

P> Lecture des fichiers d’instance faite.

P Plusieurs solveurs déja implantés
(Earliest TimingSolver, ExploreSolver, CarloSolver).

INC : Le proto aide beaucoup mais...

P Pas mal de code 2 lire pour le proto.

P Voir fichier presentation_proto_seqgata.md pour les
conseils...

P https://sod324.minisme.fr
» https://sod324.minisme.fr/seqata_docs/

14/15

https://sod324.minisme.fr
https://sod324.minisme.fr/seqata_docs/

Calendrier des retours
P Avant le V/09/12/2022 (le plus tét possible)

P envoyer votre formation de trinéme,
P créer un dépot privé sous git (github, gitlab, ...)
P = vous recevez le code proto_segata_p2023,
P = 2 recopier sous le nom seqata_gN (pour le groupe N),
P — valider votre installation de Julia,
P = explorer les fonctionnalités du proto.
» Pour V/16/12/2022 vous retourner :
P I'url de votre dépot git du projet avec journal,
P avec brique exacte STP.
P avec DescentSolver (premier jet),
» Pour V/06/01/2023 (séance de suivi de projet)
P> retour SteepestSolver opérationnel ou en cours,
P> prérapport avec au moins la description de la brique STP;

» Pour L/23/01/2023 rapport final
avec synthése préliminaire des résultats.

» Pour V/27/01/2023 (jour de I'examen)
code définitif et annexe éventuelle au rapport.

15/15

