
Projet Seqata
SÉQuencement d’ATterrissage d’Avions

Cours SOD324-MH (2022-2023)

Agnès Plateau
Maurice Diamantini et Natalia jorquera.

02/12/2022

Projet compilé le 13 février 2023 à 16h01mn
1/15

Le problème d’atterrissage sur un aéroport

Pour seqata ⇒ une seule piste d’atterrissage !

2/15

Le nom du problème est SEQATA pour Sequencement d’Atterr. d’Avion.
Le contexte du problème est le suivant :

- Un aéroport est constitué de plusieurs pistes d’atterrissage.
- Et on connait avec qq heures d’avance l’arrivée d’un ensemble d’avions.
- Chaque avion a une heure préférencielle d’atterrissage...
- mais c’est le contrôleur de l’aéroport qui doit définir sur quelle piste

et à quelle heure précise chaque avion doit.
- Au besoin il est amené à demander à l’avion d’accélérer ou de retarder

son atterrissage (par un détour).

- pour notre projet nous allons supposer que
l’aéroport n’a qu’une seule piste d’atterrissage.

Next:
Le contrôleur var donc imposer les dates d’atterrissage 𝑥𝑖 mais... Les dates
d’atterrissage de chaque avion sont bornées par un intervalle [𝐸𝑖, 𝐿𝑖]

Contraintes de fenêtre de temps de chaque avion

Ei LiTi

time

xi

Avion i

𝐴 : ensemble des 𝑛 indices d’avion
𝐸𝑖 : earliest time
𝑇𝑖 : heure d’atterrissage préférée (target time)
𝐿𝑖 : latest time

𝑥𝑖 : heure d’atterrissage calculée

Date d’atterrissage de chaque avion bornée

𝐸𝑖 ≤ 𝑥𝑖 ≤ 𝐿𝑖 ∀𝑖 ∈ 𝐴
3/15

Le contrôleur va donc imposer les dates d’atterrissage 𝑥𝑖.
- Mais d’abord, sa date d’atterrissage effective est bornée par un intervalle :

- au plus tôt 𝐸𝑖 car sa vitesse est limitée
- au plus tard 𝐿𝑖 car même si on lui fait faire un détour ou des

boucles d’attente, sa quantité de carburant est limitée !
- Ensuite, chaque avion a une heure préférée d’atterrissage 𝑇𝑖.

Si c’était la seule famille de contrainte, le problème serait facile car sépa-
rable... Mais il y a des contraintes de couplage...

Next:
En effet, un avion génère des turbulances derrière lui en fonction de sa
catégorie
... des temps de séparation entre avions

Contraintes de temps de séparation entre avions

Temps de séparation entre deux avions : 𝑆𝑖𝑗

𝑥𝑗 ≥ 𝑥𝑖 + 𝑆𝑖𝑗 ∀𝑖, 𝑗 ∈ 𝐴2 tels que 𝑖 ≠ 𝑗 et 𝑥𝑖 < 𝑥𝑗

Avec 𝑆𝑖𝑗 : matrice carrée non symétrique.
(𝑆𝑘𝑙

𝑖𝑗 si plusieurs pistes !)
4/15

Un avion génère des turbulances derrière lui en fonction de sa catégorie :
- un gros porteur va laisser derrière lui une trainée importante qui aura

d’autant plus d’effet que l’avion suivant est léger.
- on impose donc une durée de séparation minimum entre deux avions

successifs atterrissant sur un même pistes
- mais aussi entre avions sur deux pistes voisines (moindre mesure)
- dépend du type des avions
- Ces délais de séparation sont définis par 𝑆𝑖𝑗 matrice non symétriques

(e.g deltaplane derrière un gros porteur !)
- pour Seqata, on ne considère qu’une seule piste

Next:
Fonction de coût de chaque avion : pénalités

Coût de pénalité d’un avion et objectif
Fenêtre de temps pour chaque avion

ci(xi) = epi(Ti − xi)
+ + tpi(xi − Ti)

+ci

xiEi Ti Li

epi tpi

Objectif du problème

min
𝑥

∑
𝑖∈𝐴

𝑐𝑖(𝑥𝑖)

5/15

- On a vu que notre avion a une heure préférée d’atterrissage 𝑇𝑖
entre 𝐸𝑖 et 𝐿𝑖.

- Si on s’en écarte, on doit payer une pénalité.
- nous allons considèrer une penalités linéaire d’avance et de retard.
- mais en pratique, on peut avoir des fonctions de coût plus complexe :

convexes linéaire par morceau, non convexes, ... (cf sujet).
- on pourrait aussi vouloir minimiser le plus grand écart par rapport au

target sur l’ensemble des avions

Next:
Nous avons maintenant toutes les information sur le problème,
Examinons les données d’une instance...

Les données d’une instance
name alp_01_p10
nb_planes 10
nb_kinds 2
freeze_time 10 # inutile pour seqata (problème dynamique)

name kind at E T L ep tp
plane p1 1 55 130 156 560 10.0 10.0
plane p2 1 121 196 259 745 10.0 10.0
plane p3 2 15 90 99 511 30.0 30.0
plane p4 2 22 97 107 522 30.0 30.0
plane p5 2 36 111 124 556 30.0 30.0
plane p6 2 46 121 136 577 30.0 30.0
plane p7 2 50 125 139 578 30.0 30.0
plane p8 2 52 127 141 574 30.0 30.0
plane p9 2 61 136 151 592 30.0 30.0
plane p10 2 86 161 181 658 30.0 30.0

Separation time : kind1 kind2 value
sep 1 1 3
sep 1 2 15
sep 2 1 15
sep 2 2 8

6/15

• Chaque ligne contient une information indépendante,

• Les lignes vides sont à ignorer,

• Les lignes commençant par # sont des commentaires à ignorer,

• la ligne commençant name fourni le nom de l’instance,
(vont de 01 à 13, les 8 premières étant des instances jouets)

• les lignes nb_planes (deviner) et nb_kinds nbr de type d’avions
différents,
(freeze_time n’est pas utilisée)

• chaque ligne plane décrit un avion particulier (dont catégorie)

• La colonne at (appearing time) n’est pas utilisée

• Les lignes sep définissent des durées de sép. entre catégorie d’avions.
Se lit :
la durée de sép quand cat(i) est suivi par cat(j) vaut 𝑆𝑖𝑗.

Next:
Résoudre cette instance consiste au final à générer un fichier
de la solution au format suivant...

Format de la solution et validateur 1/2
name alp_01_p10
timestamp 2022-11-08T16:57:22.343
cost 700.0
order [p3,p4,p5,p6,p7,p8,p9,p1,p10,p2]

name t dt cost # comments
landing p3 99 0 0.0 # E=90 T=99 L=511 ...
landing p4 107 0 0.0 # E=97 T=107 L=522 ...
landing p5 119 -5 150.0 # E=111 T=124 L=556 ...
landing p6 127 -9 270.0 # E=121 T=136 L=577 ...
landing p7 135 -4 120.0 # E=125 T=139 L=578 ...
landing p8 143 2 60.0 # E=127 T=141 L=574 ...
landing p9 151 0 0.0 # E=136 T=151 L=592 ...
landing p1 166 10 100.0 # E=130 T=156 L=560 ...
landing p10 181 0 0.0 # E=161 T=181 L=658 ...
landing p2 259 0 0.0 # E=196 T=259 L=745 ...

Détail des commentaires sur chaque ligne (facultatif)
▶ Les formats d’instance et de solutions sont imposés,

(mais pas les commentaires)
▶ Toute solution devra être acceptée par un validateur

7/15

Next:

ZOOM de la solution pour deux avions p7 et p8

Format de la solution et validateur 2/2
...
cost 700.0
order [p3,p4,p5,p6,p7,p8,p9,p1,p10,p2]
...
landing p7 135 -4 120.0

E=125 T=139 L=578 ep=30.0 tp=30.0
sep 8(8) 16(8) 28(8) -ok-

landing p8 143 2 60.0
E=127 T=141 L=574 ep=30.0 tp=30.0
sep 8(8) 16(8) 24(8) -ok-

...

Détail des commentaires sur chaque ligne (facultatif)
▶ rappel des caractéristiques de l’avion,
▶ indique l’écart réel et minimum avec ses plus proches

prédécesseurs,
▶ ⇒ utile pour déboguer votre code !

8/15

Tout d’abord, ce format est valide (commentaires sur deux lignes),

Next:
Deux approches de résolution possibles (frontal ou par niveau)

Deux approches de résolution possibles

Approche exacte du problème complet Taille limitée
▶ Pour chaque avion, chercher sa date d’atterrissage,
▶ Plusieurs modélisations exactes possibles par PLNE,
▶ ⇒ valable pour pour les petites instances,
▶ ⇒ voir exemple en PLNE dans le proto fourni.

Décomposition en deux niveaux successifs Pour Seqata !
▶ étape 1 : chercher un ordre optimal d’atterrissage des avions

⇒ définir une permutation des avions,
▶ étape 2 : Pour un ordre d’avions donné, chercher la date

précise d’atterrissage des avions
⇒ pb connu sous le nom Sous Problème de Timing (STP).

9/15

Le proto fourni un exemple de solveur PLNE exact pas pas efficace pour
notre problème car il résoud le problème avec une fonction de coût arbitaire
(e.g non lineaire, non continu, ...)

Next:
travail demandé en quatres phases dont deux briques de base

Travail demandé 1/4 : briques de bases

Brique exacte pour le Sous-Problème de Timing (= STP)
▶ ordre des avions fixé ⇒ trouver la date 𝑥𝑖 de chaque avion,
▶ solution algorithmique : Programmation Dynamique

(DpTimingSolver) non triviale pour être efficace !
⇒ aucune dépendance externe.

▶ le plus simple : Programmation Linéaire,
(LpTimingSolver) conseillé !
⇒ nécessite solveur externe CPLEX, Gurobi, CLP, ...
⇒ vous disposerez d’un exemple de solveur avec JuMP :

EarliestTimingSolver

10/15

- On s’intéresse à la résolution exacte de ce sous-problème.
- Elle devra être répétée de nombreuses fois.
- un EarliestTimingSolver est disponible :

Mais celui-ci place les avions au plus tôt (dans l’ordre imposé)
⇒ solution sous-optimal pour le critère initial,
⇒ mais valide si faisable

Next: Seconde brique de base : une descente aléatoire...

Travail demandé 2/4 : briques de bases

Implanter une méthode de descente aléatoire
▶ définir/tester/choisir un voisinage couvrant,
▶ tirage aléatoire et acceptation éventuelle d’un voisin,
▶ compromis largeur voisinage vs rapidité convergence,
▶ créer une classe DescentSolver : Facile :

⇒ un squelette du DescentSolver existe déjà !
⇒ un ExploreSolver complet existe déjà !

11/15

• L’ExploreSolver effectue un déplacement systématique de voisin
aléatoire en voisin aléatoire.
- Il se contente de mémoriser toute solution améliorante rencontrée.
- Il permet de résoudre la plus petite instance (avec un peu de
patience)

• Le DescentSolver est presque complet, ... mais il faut bien lire le
code !

Next: 3𝑒 phase : une Steepest Descent
Cette descente aléatoire permet d’explorer des voisinages à la fois large
(car...) et complexe (car...) ...

Travail demandé 3/4 : Steepest Descent
Principe

1. à chaque itération, tester tous les voisins,
2. adopter le meilleur voisin et passer à l’itération suivante,
3. on s’arrête quand il n’y a plus de voisin améliorant,

⇒ déterministe pour une solution initiale donnée.
4. ⇒ créer nouvelle classe SteepestSolver,

Stratégies et variantes
▶ quel opérateur de voisinage utiliser ?
▶ accepter le premier voisin améliorant rencontré

⇒ passer à l’itération suivante sans tout explorer,
⇒ l’exploration ne sera complète que dans le minimum local.
⇒ ajoute de l’aléa selon ordre d’exploration.

▶ voisinage implicite (définir et appliquer chaque mouvement),
▶ voisinage explicite (préconstruire le vecteur des mouvements),

⇒ combinaisons de voisinages possibles mais plus difficile, 12/15

La descente aléatoire précédente permettait d’explorer des voisinages à la
fois large (car on en explore qu’un seul élément !)
et complexe (mélange probabiliste de plusieurs voisinages).
Mais celle-ci ne garantit pas l’atteinte d’un minimum local.

La Steepest descent garantit l’atteinte d’un minimum local car elle explore
le voisinage complet.
Par contre le voisinage ne doit pas être trop grand (sinon c’est trop long !),
ni trop complexe (car difficile d’être exhaustif sans être redondant).

Next: La 4𝑒 phase : VNS
méthode à voisinage variable...

Travail demandé 4/4 : métaheuristique

Méthode à voisinage variable (VNS)
▶ but : implanter une méta-heuristique complète,
▶ ⇒ créer nouvelle classe VnsSolver,
▶ en exploitant les briques précédentes,
▶ explorer les variantes de VNS présentées en cours,
▶ objectif : meilleure solution possible en 1 heure,
▶ liberté et créativité !

Challenge !
1/2 point de bonus par record battu

pour chacune des 5 grosses instances 1

1. limité à 1.5 points
13/15

La difficulté du VNS :
- choisir de petits voisinages au départ !

Il y a aussi le travail 5/4 :
- décomposition en tranches temporelles
- optionnel mais OBLIGATOIRE SI il y a des quadrinômes

Si vous voulez coder ce projet en C++ , il faudra déveloper :
- les structures de données (Instance, Plane, Solution, ...),
- une ”classe” pour chaque solveur avec leur méthode solve!,
- une gestion des options de la ligne de commande,
- choisir entre plusieurs solveurs,
- la lecture du fichier fichier d’instance passé en paramètre,
- construire et exécuter le solveur choisi,
- en extraire le résultats,
- enregistrer la solution.

Next: Heureusement, vous disposerez d’un prototype de code en Julia
opérationnel.

Un prototype de programme Julia est fourni
AV : Le proto est opérationnel !

▶ Projet pré-organisé et fonctionnel.
▶ Structure de classes (Instance, Planes, Solution ...).
▶ Gestion des options déjà faite (personnalisable).
▶ Lecture des fichiers d’instance faite.
▶ Plusieurs solveurs déjà implantés

(EarliestTimingSolver, ExploreSolver, CarloSolver).

INC : Le proto aide beaucoup mais...
▶ Pas mal de code à lire pour le proto.
▶ Voir fichier presentation_proto_seqata.md pour les

conseils...
▶ https://sod324.minisme.fr
▶ https://sod324.minisme.fr/seqata_docs/

14/15

Next: Calendrier des retours.

compilé le 13 février 2023 à 16h01mn

https://sod324.minisme.fr
https://sod324.minisme.fr/seqata_docs/

Calendrier des retours
▶ Avant le V/09/12/2022 (le plus tôt possible)

▶ envoyer votre formation de trinôme,
▶ créer un dépot privé sous git (github, gitlab, ...)
▶ ⇒ vous recevez le code proto_seqata_p2023,
▶ ⇒ à recopier sous le nom seqata_gN (pour le groupe N),
▶ ⇒ valider votre installation de Julia,
▶ ⇒ explorer les fonctionnalités du proto.

▶ Pour V/16/12/2022 vous retourner :
▶ l’url de votre dépot git du projet avec journal,
▶ avec brique exacte STP.
▶ avec DescentSolver (premier jet),

▶ Pour V/06/01/2023 (séance de suivi de projet)
▶ retour SteepestSolver opérationnel ou en cours,
▶ prérapport avec au moins la description de la brique STP ;

▶ Pour L/23/01/2023 rapport final
avec synthèse préliminaire des résultats.

▶ Pour V/27/01/2023 (jour de l’examen)
code définitif et annexe éventuelle au rapport.

15/15

- LEUR DEMANDE DE PRÉVOIR UN JOURNAL DE VOTRE TRAVAIL
PAR PERSONNE DANS DÉPOT GIT !
- se mettre rapidement à git
- s’approprier rapidement le code du proto

compilé le 13 février 2023 à 16h01mn

