Projet SEQATA
SEQuencement d'ATterrissage d’Avions

Cours SOD324-MH (2022-2023)

Agnés PLATEAU
Maurice DIAMANTINI et Natalia JORQUERA.

02/12/2022

1/15

Le probleme d'atterrissage sur un aéroport

| ¥ égm:t

v L B o

4 | “ovese
|

It 3 A
& < Holding pattern

Pour SEQATA = une seule piste d'atterrissage !

2/15

Le nom du probleme est SEQATA pour Sequencement d'Atterr. d'Avion.
Le contexte du probléme est le suivant :

- Un aéroport est constitué de plusieurs pistes d'atterrissage.
- Et on connait avec qq heures d'avance I'arrivée d'un ensemble d'avions.
- Chaque avion a une heure préférencielle d'atterrissage...

- mais c'est le contrdleur de I'aéroport qui doit définir sur quelle piste
et a quelle heure précise chaque avion doit.

- Au besoin il est amené a demander a I'avion d’accélérer ou de retarder
son atterrissage (par un détour).

- pour notre projet nous allons supposer que
I'aéroport n’a qu’une seule piste d’atterrissage.

Next:

Le contrdleur var donc imposer les dates d’atterrissage z; mais... Les dates
d’atterrissage de chaque avion sont bornées par un intervalle [E;, L;]

Contraintes de fenétre de temps de chaque avion

Avion ¢
AN
] : \:/ |77777777>tim6
Ez T‘L L Lz
A : ensemble des n indices d'avion
E; : earliest time
T, : heure d'atterrissage préférée (target time)
L, : latest time

x; : heure d'atterrissage calculée

Date d'atterrissage de chaque avion bornée

3/15

Le contrbleur va donc imposer les dates d'atterrissage ;.
- Mais d'abord, sa date d'atterrissage effective est bornée par un intervalle :
- au plus tét E; car sa vitesse est limitée
- au plus tard L; car méme si on lui fait faire un détour ou des
boucles d'attente, sa quantité de carburant est limitée !
- Ensuite, chaque avion a une heure préférée d'atterrissage T;.

Si c'était la seule famille de contrainte, le probléme serait facile car sépa-
rable... Mais il y a des contraintes de couplage...

Next:

En effet, un avion génére des turbulances derriére lui en fonction de sa
catégorie

... des temps de séparation entre avions

Contraintes de temps de séparation entre avions

| !

r
|
!

A

................. N dAN

Temps de séparation entre deux avions : S,

r; > x;+ 5 ‘v’i,jEAQtelsquei#jetxi<xj

Avec S;; : matrice carrée non symétrique.

(Si’“jl si plusieurs pistes!)
4/15

Un avion génére des turbulances derriére lui en fonction de sa catégorie :

- un gros porteur va laisser derriere lui une trainée importante qui aura
d'autant plus d'effet que I'avion suivant est léger.

- on impose donc une durée de séparation minimum entre deux avions
successifs atterrissant sur un méme pistes

- mais aussi entre avions sur deux pistes voisines (moindre mesure)

- dépend du type des avions

- Ces délais de séparation sont définis par .S;; matrice non symétriques
(e.g deltaplane derriére un gros porteur!)

- pour Seqata, on ne considére qu'une seule piste

Next:
Fonction de colit de chaque avion : pénalités

Colit de pénalité d'un avion et objectif
Fenétre de temps pour chaque avion

..
T cilws) = epi(Ty — x3) ™ +tps(a — T) T

Objectif du probleme

mmin Z ¢;(w;)

€A

- On a vu que notre avion a une heure préférée d'atterrissage 7,
entre E; et L,.

- Si on s'en écarte, on doit payer une pénalité.

- nous allons considérer une penalités linéaire d'avance et de retard.

- mais en pratique, on peut avoir des fonctions de coiit plus complexe :

convexes linéaire par morceau, non convexes, ... (cf sujet).
- on pourrait aussi vouloir minimiser le plus grand écart par rapport au
target sur I'ensemble des avions

Next:
Nous avons maintenant toutes les information sur le probleme,
Examinons les données d'une instance...

5/15

Les données d'une instance

name alp_01_pl0

nb_planes 10

nb_kinds 2

freeze_time 10 # inutile pour seqata (probléme dynamique)

name kind at E T L ep tp
plane pil 1 55 130 156 560 10.0 10.0
plane p2 1 121 196 259 745 10.0 10.0
plane p3 2 15 90 99 511 30.0 30.0
plane p4 2 22 97 107 522 30.0 30.0
plane pb 2 36 111 124 556 30.0 30.0
plane p6 2 46 121 136 577 30.0 30.0
plane p7 2 50 125 139 578 30.0 30.0
plane p8 2 52 127 141 574 30.0 30.0
plane p9 2 61 136 151 592 30.0 30.0
plane p10 2 86 161 181 658 30.0 30.0
Separation time : kindl kind2 value

sep 113

sep 1 2 15

sep 2 1 15

sep 2 2 8

6/15

= Chaque ligne contient une information indépendante,
= Les lignes vides sont a ignorer,
= Les lignes commencant par # sont des commentaires a ignorer,

= la ligne commencant name fourni le nom de I'instance,
(vont de 01 a 13, les 8 premiéres étant des instances jouets)

= les lignes nb_planes (deviner) et nb_kinds nbr de type d'avions
différents,
(freeze_time n'est pas utilisée)

» chaque ligne plane décrit un avion particulier (dont catégorie)
» La colonne at (appearing time) n'est pas utilisée

= Les lignes sep définissent des durées de sép. entre catégorie d'avions.
Se lit :
la durée de sép quand cat(i) est suivi par cat(j) vaut S;;.

Next:
Résoudre cette instance consiste au final a générer un fichier
de la solution au format suivant...

Format de la solution et validateur 1/2
name alp_01_p10
timestamp 2022-11-08T16:57:22.343
cost 700.0
order [p3,p4,p5,p6,p7,p8,p9,pl,p10,p2]

name t dt cost # comments

landing p3 99 O 0.0 # E=90 T=99 L=511
landing p4 107 O 0.0 # E=97 T=107 L=522
landing p5 119 -5 150.0 # E=111 T=124 L=556
landing p6 127 -9 270.0 # E=121 T=136 L=577
landing p7 135 -4 120.0 # E=125 T=139 L=578
landing p8 143 2 60.0 # E=127 T=141 L=574
landing p9 151 0 0.0 # E=136 T=151 L=592
landing pl 166 10 100.0 # E=130 T=156 L=560
landing p10 181 0 0.0 # E=161 T=181 L=658
landing p2 259 0 0.0 # E=196 T=259 L=745

Détail des commentaires sur chaque ligne (facultatif)

P Les formats d'instance et de solutions sont imposés,
(mais pas les commentaires)

P Toute solution devra étre acceptée par un validateur
7/15

Next:

ZOOM de la solution pour deux avions p7 et p8

Format de la solution et validateur 2/2

cost 700.0
order [p3,p4,p5,p6,p7,p8,p9,pl,p10,p2]
landing p7 135 -4 120.0
E=125 T=139 L=578 ep=30.0 tp=30.0
sep 8(8) 16(8) 28(8) -ok-
landing p8 143 2 60.0
E=127 T=141 L=574 ep=30.0 tp=30.0
sep 8(8) 16(8) 24(8) -ok-

Détail des commentaires sur chaque ligne (facultatif)

P> rappel des caractéristiques de |'avion,

P indique I'écart réel et minimum avec ses plus proches
prédécesseurs,

P = utile pour déboguer votre code!

8/15

Tout d'abord, ce format est valide (commentaires sur deux lignes),

Next:
Deux approches de résolution possibles (frontal ou par niveau)

Deux approches de résolution possibles

Approche exacte du probleme complet Taille limitée

P Pour chaque avion, chercher sa date d'atterrissage,
P Plusieurs modélisations exactes possibles par PLNE,
P = valable pour pour les petites instances,

P = voir exemple en PLNE dans le proto fourni.

Décomposition en deux niveaux successifs Pour Seqata !

P> étape 1 : chercher un ordre optimal d'atterrissage des avions
= définir une permutation des avions,

P étape 2 : Pour un ordre d'avions donné, chercher la date
précise d'atterrissage des avions
= pb connu sous le nom Sous Probléeme de Timing (STP).

9/15

Le proto fourni un exemple de solveur PLNE exact pas pas efficace pour
notre probléme car il résoud le probléme avec une fonction de coiit arbitaire
(e.g non lineaire, non continu, ...)

Next:
travail demandé en quatres phases dont deux briques de base

Travail demandé 1/4 : briques de bases

Brique exacte pour le Sous-Probléme de Timing (= STP)

P> ordre des avions fixé = trouver la date z; de chaque avion,

P solution algorithmique : Programmation Dynamique
(DpTimingSolver) non triviale pour étre efficace!
= aucune dépendance externe.

P le plus simple : Programmation Linéaire,
(LpTimingSolver) conseillé !
= nécessite solveur externe CPLEX, Gurobi, CLP, ...
= vous disposerez d'un exemple de solveur avec JUMP :
EarliestTimingSolver

10/15

- On s'intéresse a la résolution exacte de ce sous-probleme.

- Elle devra étre répétée de nombreuses fois.

- un EarliestTimingSolver est disponible :
Mais celui-ci place les avions au plus tét (dans I'ordre imposé)
= solution sous-optimal pour le critére initial,
= mais valide si faisable

Next: Seconde brique de base : une descente aléatoire...

Travail demandé 2/4 : briques de bases

Implanter une méthode de descente aléatoire

\ A A4

définir/tester/choisir un voisinage couvrant,
tirage aléatoire et acceptation éventuelle d'un voisin,
compromis largeur voisinage vs rapidité convergence,

créer une classe DescentSolver : Facile :
= un squelette du DescentSolver existe déja!
= un ExploreSolver complet existe déja!

L'ExploreSolver effectue un déplacement systématique de voisin
aléatoire en voisin aléatoire.

- Il se contente de mémoriser toute solution améliorante rencontrée.
- Il permet de résoudre la plus petite instance (avec un peu de
patience)

Le DescentSolver est presque complet, ... mais il faut bien lire le
code!

Next: 3¢ phase : une Steepest Descent
Cette descente aléatoire permet d’explorer des voisinages a la fois large

(car.

..) et complexe (car...) ...

11/15

Travail demandé 3/4 : Steepest Descent
Principe
1. a chaque itération, tester tous les voisins,

2. adopter le meilleur voisin et passer a |'itération suivante,

3. on s'arréte quand il n'y a plus de voisin améliorant,
= déterministe pour une solution initiale donnée.

4. = créer nouvelle classe SteepestSolver,

Stratégies et variantes

P quel opérateur de voisinage utiliser ?

P> accepter le premier voisin améliorant rencontré
= passer a l'itération suivante sans tout explorer,
= |'exploration ne sera compléte que dans le minimum local.
= ajoute de I’aléa selon ordre d'exploration.

P> voisinage implicite (définir et appliquer chaque mouvement),

P> voisinage explicite (préconstruire le vecteur des mouvements),
= combinaisons de voisinages possibles mais plus difficile, 1,15

La descente aléatoire précédente permettait d'explorer des voisinages a la
fois large (car on en explore qu’'un seul élément!)

et complexe (mélange probabiliste de plusieurs voisinages).

Mais celle-ci ne garantit pas |'atteinte d'un minimum local.

La Steepest descent garantit |'atteinte d'un minimum local car elle explore
le voisinage complet.

Par contre le voisinage ne doit pas étre trop grand (sinon c’est trop long!),
ni trop complexe (car difficile d'étre exhaustif sans étre redondant).

Next: La 4¢ phase : VNS
méthode a voisinage variable...

Travail demandé 4/4 : métaheuristique

Méthode a voisinage variable (VNS)

P but : implanter une méta-heuristique compléte,
P = créer nouvelle classe VnsSolver,

P en exploitant les briques précédentes,

P> explorer les variantes de VNS présentées en cours,
P objectif : meilleure solution possible en 1 heure,
P liberté et créativité!

Challenge!

1/2 point de bonus par record battu

pour chacune des 5 grosses instances?!

1. limité a 1.5 points
13/15

La difficulté du VNS :
- choisir de petits voisinages au départ !

Il'y a aussi le travail 5/4 :
- décomposition en tranches temporelles
- optionnel mais OBLIGATOIRE Sl il y a des quadrinémes

Si vous voulez coder ce projet en C++ , il faudra déveloper :
- les structures de données (Instance, Plane, Solution, ...),

- une "classe” pour chaque solveur avec leur méthode solve!,
- une gestion des options de la ligne de commande,

- choisir entre plusieurs solveurs,

- la lecture du fichier fichier d'instance passé en paramétre,

- construire et exécuter le solveur choisi,

- en extraire le résultats,

- enregistrer la solution.

Next: Heureusement, vous disposerez d'un prototype de code en Julia
opérationnel.

Un prototype de programme Julia est fourni

AV : Le proto est opérationnel !
P> Projet pré-organisé et fonctionnel.
P> Structure de classes (Instance, Planes, Solution ...).
P> Gestion des options déja faite (personnalisable).
P Lecture des fichiers d'instance faite.

P Plusieurs solveurs déja implantés
(Earliest TimingSolver, ExploreSolver, CarloSolver).

INC : Le proto aide beaucoup mais...

P Pas mal de code 2 lire pour le proto.

P Voir fichier presentation_proto_seqata.md pour les
conseils...

» https://sod324.minisme.fr
P https://sod324.minisme.fr/seqata_docs/

14/15

Next: Calendrier des retours.

compilé le 13 février 2023 3 16h01mn

https://sod324.minisme.fr
https://sod324.minisme.fr/seqata_docs/

Calendrier des retours
P Avant le V/09/12/2022 (le plus tét possible)

P envoyer votre formation de trinéme,

P> créer un dépot privé sous git (github, gitlab, ...)

P = vous recevez le code proto_segata_p2023,

P = 2 recopier sous le nom seqata_gN (pour le groupe N),
P = valider votre installation de Julia,

P> = explorer les fonctionnalités du proto.

» Pour V/16/12/2022 vous retourner :

P I'url de votre dépot git du projet avec journal,

P avec brique exacte STP.

P avec DescentSolver (premier jet),
P Pour V/06/01/2023 (séance de suivi de projet)

P retour SteepestSolver opérationnel ou en cours,

P prérapport avec au moins la description de la brique STP;
» Pour L/23/01/2023 rapport final

avec synthése préliminaire des résultats.

» Pour V/27/01/2023 (jour de I'examen)
code définitif et annexe éventuelle au rapport.

- LEUR DEMANDE DE PREVOIR UN JOURNAL DE VOTRE TRAVAIL
PAR PERSONNE DANS DEPOT GIT !

- se mettre rapidement a git

- s'approprier rapidement le code du proto

compilé le 13 février 2023 3 16h01mn

15/15

